
Unit 7 Assignment

Grading Information: This Program is due on Date Specified.

Comments are REQUIRED; flow charts and pseudocode are NOT REQUIRED.

Directions Points

The files must be called <LastInitialFirstInitialUnit7.java> (driver)
<LastInitialFirstInitialAddress.java> (handles Address variables and methods)

Proper coding conventions required the first letter of the class start with a capital
letter and the first letter of each additional word start with a capital letter.

Only submit the .java files needed to make the program run. Do not submit the
.class file or any other file.

5%

Style Components

Include properly formatted prologue, comments, indenting, and other style elements
as shown in Chapter 2 starting page 64 and Appendix 5 page 881-892.

5%

Topics covered in chapter

Topics with * are covered in this assignment. Ensure you use every item listed below with
an * in your completed assignment.

*Relationships between reference variables and objects
Reference assignment
Memory space
Equality of Objects
Swap data in objects
*Method call chaining
*Object creating and initialization
Calling one constructor from inside another
Class variable usage
Class methods
Class constants

Basic Requirements

Write a driver class and an Address class that gets address data from file, process, and
output the results. Refer to chapter 3 on how to read in a file.

LiFiUnit7.java (driver)

Provide a driver class that demonstrates this Address class. It should contain a main
that does the following in the specified order:

• Print a welcome message (see sample)

20%

• Print a loading message (see sample)

• Use the following code to load address data from a given text file
“addressList.txt”.

 Scanner fileIn = new Scanner(new File("addressList.txt"));

 while (fileIn.hasNext())

 {

 // read info from file

 String street, city, state, zip;

 // read street:

 // break into two reads to handle blank lines between addresses

 // next() will skip blank lines between addresses but stops at

spaces,

 // and nextLine() will read in the rest of the street line

 street = fileIn.next() + fileIn.nextLine();

 city = fileIn.nextLine();

 state = fileIn.nextLine();

 zip = fileIn.nextLine();

 // ADD CODE

 } // end file reading while

 fileIn.close(); // close file input Scanner object.

• Add into the above while loop: declare and initialize an Address object by
invoking the 4-parameter constructor. Pass in the street, city, state, zip you
just read from the file

• Add into the above while loop: call the display() method on the Address object
to print this address (see sample for format)

• After the loop ends, print an end of list message (see sample)

• Print total # of addresses. Need to call the getAddressCount() class method of
Address class.

• Print # of PO Box addresses. Need to call the getPOBoxAddressCount() class
method of Address class.

This demonstration driver does not call all accessor and mutator methods but it is
normal to create them regardless of an immediate use. They may be needed in the
future.

Sample output is provided below. Be sure to mimic it exactly. 10%

LiFiAddress.java

Write an Address class called LiFiAddress.java that with the follow members:

• Four private instance data members, all of String type: street, city, state, and
zipCode

• Two private class data members, both of int type: addressCount,
poboxAddressCount. Both should be initialized to 0 within their declaration

60%

• One default constructor with empty body

• One 4-parameter constructor that takes four String type parameters in the
order of street, city, state, and zipCode. This constructor should do the
following:
 assign each parameter to the corresponding instance data member

 increment class member addressCount by 1

 if street String contains “PO Box”

 increment class member poboxAddressCount by 1

Hint:
1) Use the indexOf method from String class which takes a String object parameter.

 public int indexOf(String str)
See Fig 5.8 on p179 and code example on p183 for detail of this method. You may also check
the Java API documentation page for String class.
2) must use method chaining (ch7.6)

• static method getAddressCount(): no parameter, int return type. Return the
class member addressCount

• static method getPOBoxAddressCount(): no parameter, int return type. Return
the class member poboxAddressCount

• instance method setAddress(): four parameters, all of String type in the order
of street, city, state, and zipCode. void return type. This method assign each
parameter to the corresponding instance data member.

• Four getXXX methods: no parameter, String return type. Each returns the
corresponding instance data member.

• All data members (instance or class) must be private

• All constructors and methods (instance or class) must be public

NOTE: Complete your activity and submit it by clicking “Submit Assignment”

Total Percentage 100%

Data for Text File (named addressList.txt. Download it on the assignment page)

8700 NW River Park Dr.

Parkville

MO

64152

1600 Pennsylvania Ave NW

Washington

DC

20500

PO Box 598

Bloomfield

CT

06002

1600 Amphitheatre Parkway

Mountain View

CA

94043

PO BOX 34981

Philadelphia

PA

19192

1200 E. 151st St.

Olathe

KS

66062

Sample
Your output should match the sample below. Notice that the two

PO Box addresses are both recognized even though they are of

different cases: PO Box and PO BOX.

